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A startling claim about Nu!

“In all common heat transfer books, [Nu]
for laminar fully developed incompressible
flow in a plane channel with isothermal
walls is Nu = 7.54 …However, when the
viscous dissipation is very small but not
identically zero (which is a physical
impossibility), …Nu = 35/2 for a liquid or Nu
= 0 for an ideal gas.” [1]

Ref. [1] states that most heat transfer
textbooks quote “wrong results” and that
dissipative solutions have been “not
understood, overlooked, and forgotten.”

Edvard Munch, 1895

A similar result had been reported in 1973 [2], but not adopted.
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Fully developed laminar flow between parallel plates

𝗎(𝗒)

𝗒

𝗑

+𝖧/𝟤

−𝖧/𝟤

𝗑 = 𝟢

𝖳𝟢 𝖳𝗐

Entry region Thermally developed region

𝗑𝗍𝖾 𝖫𝗆𝖺𝗑

Fully-developed flow

𝑢(𝑦) = 3
2𝑢𝑏 [1 − 4 (

𝑦
𝐻)

2
]

−
𝑑𝑝
𝑑𝑥 =

12𝜇𝑢𝑏
𝐻2

Thermal energy equation (𝑑ℎ = 𝑇𝑑𝑠 + 𝑣 𝑑𝑝)

𝜌𝑐𝑝 u ⋅ ∇𝑇 = −∇ ⋅ q + 𝛽𝑇u ⋅ ∇𝑝 + 𝑑𝑗𝑖
𝜕𝑢𝑖
𝜕𝑥𝑗

with 𝑢(𝑦) and neglecting axial conduction

𝜌𝑐𝑝𝑢(𝑦)
𝜕𝑇
𝜕𝑥 = 𝑘𝜕

2𝑇
𝜕𝑦2 + 𝛽𝑇𝑢(𝑦)

𝑑𝑝
𝑑𝑥 + 𝜇 (𝑑𝑢𝑑𝑦)

2

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
fn(𝑦 only)

some text to fill up the page
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Solution by superposition

Separate the contribution of flow work and dissipation

𝑇(𝑥, 𝑦) = 𝑇pp(𝑥, 𝑦) + 𝑇diss(𝑦)

𝑇pp is just the classical Graetz problem

𝜌𝑐𝑝𝑢(𝑦)
𝜕𝑇pp
𝜕𝑥 = 𝑘

𝜕2𝑇pp
𝜕𝑦2 , 𝑇pp = {

𝑇𝑤 𝑥 ≥ 0, 𝑦 = ±𝐻/2
𝑇0 𝑥 = 0, ∀𝑦

The second is problem is an ode (dissipation & flow work ≠ fn(𝑥)):

0 = 𝑘
𝑑2𝑇diss
𝑑𝑦2 + (𝛽𝑇)⏟

≃const.
𝑢(𝑦)

𝑑𝑝
𝑑𝑥 + 𝜇 (𝑑𝑢𝑑𝑦)

2
, 𝑇diss(𝑦 = ±𝐻/2) = 0

NB: 𝛽𝑇 = 0 if incompressible, 𝛽𝑇 = 1 for ideal gas.
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Graetz solution (no flow work or dissipation)

The classical result for step-change wall temperature is [3–9]

𝜃pp(𝑥+, ̄𝑦) =
𝑇pp − 𝑇𝑤
𝑇0 − 𝑇𝑤

= 𝐵0 exp (−
32
3 𝜆

2
0𝑥+) 𝑌0( ̄𝑦) +

∞
∑
𝑛=1

𝐵𝑛 exp (−
32
3 𝜆

2
𝑛𝑥+) 𝑌𝑛( ̄𝑦)

for 𝑥+ = (𝑥/𝐷ℎ)
Re𝐷ℎPr

and ̄𝑦 =
𝑦
𝐻

with bulk temperature

𝜃𝑏pp(𝑥+) = 3
∞
∑
𝑛=0

𝐺𝑛
𝜆2𝑛

exp (−323 𝜆
2
𝑛𝑥+)

and wall heat flux (at ̄𝑦 = 1/2) is

𝑞𝑤,pp(𝑥+) =
8(𝑇0 − 𝑇𝑤)𝑘

𝐷ℎ

∞
∑
𝑛=0

𝐺𝑛 exp (−
32
3 𝜆

2
𝑛𝑥+)
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Graetz solution: Dimensionless flux & Nusselt number

𝟣𝟢−𝟥 𝟣𝟢−𝟤 𝟢.𝟣 𝟣
𝟢.𝟢

𝟤.𝟢

𝟦.𝟢

𝟨.𝟢

𝟪.𝟢

𝟣𝟢.𝟢

𝟣𝟤.𝟢

𝟣𝟦.𝟢

𝟣𝟨.𝟢

𝟣𝟪.𝟢

𝟤𝟢.𝟢

𝗑+𝗍𝖾 = 𝟢.𝟢𝟢𝟩𝟫𝟩𝟦

7.541

Position, 𝗑+ = (𝗑/𝖣𝗁)/Re𝖣𝗁Pr

N
us

se
lt

nu
m

be
r,

N
u 𝖣

𝗁

Graetz solution, Br = 𝟢

𝟣𝟢−𝟤 𝟢.𝟣 𝟣
𝟣𝟢−𝟦

𝟣𝟢−𝟥

𝟣𝟢−𝟤

𝟢.𝟣

𝟣

𝟣𝟢

𝗑+𝗊𝖾 = 𝟢.𝟢𝟢𝟪𝟣𝟣𝟩

𝟢.𝟢𝟧
𝟢.𝟢𝟤
𝟢.𝟢𝟣

θ𝖻

𝗑+ = (𝗑/𝖣𝗁)/Re𝖣𝗁Pr

𝗊 𝗐
𝖣 𝗁
/𝗄

(𝖳
𝗐
−
𝖳 𝟢

)

Graetz heat flux, Br = 𝟢

𝒙+𝒕𝒆∶ Nu𝐷ℎ within 5% of thermally developed value (one-term solution)
𝒙+𝒒𝒆∶ 𝑞𝑤 within 5% of thermally developed value (one-term solution)

Practical heat exchangers stop at a finite pinch, with 𝜃𝑏 > 0
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Contribution of dissipation & flow work

𝜃diss =
𝑇diss
Δ𝑇 = Br [9(𝛽𝑇) ( ̄𝑦2 − 2

3 ̄𝑦4) − 12 ̄𝑦4 − 15
8 (𝛽𝑇) +

3
4]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

=fn( ̄𝑦)

with Br = 𝜇𝑢2𝑏/𝑘Δ𝑇, and Δ𝑇 = 𝑇𝑤 − 𝑇0. Bulk temperature rise is

𝜃𝑏diss = 𝑎Br =
⎧

⎨
⎩

+2435 Br 𝛽𝑇 = 0, incompressible liquid

−2735 Br 𝛽𝑇 = 1, ideal gas

and wall temperature gradient is

𝑑𝜃diss
𝑑 ̄𝑦

|
|
| ̄𝑦=+𝐻/2

= 6Br [𝛽𝑇 − 1] = {
−6Br incompressible liquid

0 ideal gas !!
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Dissipative temperature rise for ideal gases and
incompressible liquids

−𝟢.𝟢𝟤𝟧 −𝟢.𝟢𝟤 −𝟢.𝟢𝟣𝟧 −𝟢.𝟢𝟣 −𝟢.𝟢𝟢𝟧 𝟢 𝟢.𝟢𝟢𝟧 𝟢.𝟢𝟣 𝟢.𝟢𝟣𝟧 𝟢.𝟢𝟤
−𝟢.𝟧

−𝟢.𝟦

−𝟢.𝟥

−𝟢.𝟤

−𝟢.𝟣

𝟢.𝟢

𝟢.𝟣

𝟢.𝟤

𝟢.𝟥

𝟢.𝟦

𝟢.𝟧

β𝖳 = 𝟣 β𝖳 = 𝟢

𝖡𝗋 = 𝟢.𝟢𝟤

𝟢.𝟢𝟣
𝟢.𝟢𝟢𝟧

𝟢.𝟢𝟢𝟣

θdiss

Po
si

tio
n,

̄𝗒
=

y/
H
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High values of the Brinkman number (Br = 𝜇𝑢2𝑏/𝑘Δ𝑇)

Consider Δ𝑇 = 𝑇0 − 𝑇𝑤 = 10 K and mean temperatures of about 310 K.

Air: at 𝑢𝑏 = 15 m/s, 𝐻 = 1mm: Re𝐷ℎ = 1797, Br = 0.0158
𝑇𝑏
diss = −(27/35)BrΔ𝑇 = −0.122 K

Water: at 𝑢𝑏 = 0.7 m/s, 𝐻 = 1mm: Re𝐷ℎ = 2005, Br = 5.43 × 10−5

𝑇𝑏
diss = (24/35)BrΔ𝑇 = 0.37mK

Glycerol: at 𝑢𝑏 = 0.5 m/s, 𝐻 = 5mm: Re𝐷ℎ = 22, Br = 0.0249
𝑇𝑏
diss = (24/35)BrΔ𝑇 = 0.171 K

−0.7 atm/m pressure gradient…getting large

Raising 𝑢𝑏 to 5 m/s gives: Re𝐷ℎ = 220, Br = 2.49 , 𝑇𝑏
diss = 17.1 K, and

𝑑𝑝/𝑑𝑥 = −7 atm/m…
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Dimensionless heat flux in liquids: 𝑞𝑤 = 𝑞𝑤,pp + 𝑞𝑤,diss

𝟣𝟢−𝟤 𝟢.𝟣 𝟣
𝟣𝟢−𝟦

𝟣𝟢−𝟥

𝟣𝟢−𝟤

𝟢.𝟣

𝟣

𝟣𝟢

𝗑+𝗊𝖾

Br = 𝟣𝟢−𝟤

𝟣𝟢−𝟥

𝟣𝟢−𝟦

𝖫+max,𝟣𝟢−𝟤

𝖫+max,𝟣𝟢−𝟥

𝖫+max,𝟣𝟢−𝟦

𝟢.𝟢𝟧
𝟢.𝟢𝟤
𝟢.𝟢𝟣

θ𝖻

𝗑+ = (𝗑/𝖣𝗁)/Re𝖣𝗁Pr

𝗊 𝗐
𝖣 𝗁
/𝗄

(𝖳
𝗐
−
𝖳 𝟢

)

Graetz heat flux, Br = 𝟢

𝑞𝑤,diss/𝑞𝑤 ⩽ 5%
for 𝑥+ ⩽ 𝐿+max,Br
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So what about the Nusselt number?

Naively using ℎ = 𝑞𝑤/(𝑇𝑏 − 𝑇𝑤), as in Refs. [1,2], gives

Nu𝐷ℎ =
𝑞𝑤𝐷ℎ

𝑘(𝑇0 − 𝑇𝑤)𝜃𝑏

=
8∑∞

𝑛=0𝐺𝑛 exp [−(32/3)𝜆
2
𝑛𝑥+] + 12Br

3∑∞
𝑛=0(𝐺𝑛/𝜆

2
𝑛) exp [−(32/3)𝜆2𝑛𝑥+] + 𝑎Br

where blue-colored term is only for liquids.

The result behaves strangely as 𝑥+ ⟶∞ …
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Nu without separating dissipation (liquids, Br > 0)

𝟣𝟢−𝟥 𝟣𝟢−𝟤 𝟢.𝟣 𝟣
𝟢.𝟢

𝟤.𝟢

𝟦.𝟢

𝟨.𝟢

𝟪.𝟢

𝟣𝟢.𝟢

𝟣𝟤.𝟢

𝟣𝟦.𝟢

𝟣𝟨.𝟢

𝟣𝟪.𝟢

𝟤𝟢.𝟢

𝗑+𝗍𝖾

Br = 𝟣𝟢−𝟤
𝟣𝟢−𝟥

𝟣𝟢−𝟦

17.5

7.541

𝖫+,Nu
max,𝟣𝟢−𝟤

𝖫+,Nu
max,𝟣𝟢−𝟥

𝖫+,Nu
max,𝟣𝟢−𝟦

Position, 𝗑+ = (𝗑/𝖣𝗁)/Re𝖣𝗁Pr

N
us

se
lt 

nu
m

be
r, 

N
u 𝖣

𝗁
Graetz solution, Br = 𝟢
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Nu without separating dissipation (liquids, Br < 0)
For 𝑇𝑤 > 𝑇0 (heating), Br < 0

𝟣𝟢−𝟥 𝟣𝟢−𝟤 𝟢.𝟣 𝟣
𝟢.𝟢

𝟤.𝟢

𝟦.𝟢

𝟨.𝟢

𝟪.𝟢

𝟣𝟢.𝟢

𝟣𝟤.𝟢

𝟣𝟦.𝟢

𝟣𝟨.𝟢

𝟣𝟪.𝟢

𝟤𝟢.𝟢

𝗑+𝗍𝖾

Br = −𝟣𝟢−𝟤

−𝟣𝟢−𝟥

17.5

−𝟣𝟢−𝟦

7.541
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Superposition in high-speed flow and channels

Dissipation in a high-speed boundary
layer heats an adiabatic wall. Heat is
rejected to free stream.

For an isothermal wall, a superposition
solution shows

𝑞𝑤 = ℎ(𝑇𝑎𝑤 − 𝑇𝑤)

with 𝒉 for flow w/o dissipation [8,12].

Rohsenow & Choi, 1961

Dissipation in a high-speed boundary
layer heats an adiabatic wall. Heat is

rejected to free stream.

For an isothermal wall, a superposition
solution shows

𝑞𝑤 = ℎ(𝑇𝑎𝑤 − 𝑇𝑤)

with 𝒉 for flow w/o dissipation [8,12].

In a channel, dissipation raises 𝑇𝑏 and
𝑞𝑤 by uniform small amounts, and heat
is rejected to the wall (for liquids):

𝑇𝑏
diss =

𝑎𝜇𝑢2𝑏
𝑘 𝑞liqdiss =

6𝜇𝑢2𝑏
𝐻

Superposition gives us

𝑞𝑤 = 𝑞pp + 𝑞liqdiss
= ℎpp(𝑇𝑏

pp − 𝑇𝑤) + 𝑞liqdiss

where 𝒉pp is the Graetz value.

We can just compute the heat
transfer using classical Graetz, and
then add back 𝑞liqdiss (if it’s not
negligible)

Similarly, 𝑇𝑏 = 𝑇pp + 𝑇𝑏
diss.
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Example: the glycerol flow mentioned earlier (0.5 m/s)

𝑇0 = 318 K
𝑇𝑤 = 308 K
𝑥 = 2.5m
𝑥+ = 0.00464

NuGraetz = 7.541

ℎpp = 214.9W/m2K
𝑇𝑏
pp = 315.92 K

𝑞𝑤,pp = 214.9(315.92 − 308)
= 1701W/m2

Adding on the dissipative increments,

𝑇𝑏
diss = 0.171 K

𝑞liqdiss = 85.06W/m2 (NB: +5%)

we find 𝑇𝑏 = 316.09 K and 𝑞𝑤 = 1786W/m2.

The same results are obtained using the strange Nu that includes dissipation.
But with superposition, we don't need a complicated additional Nusselt
number; and thermally developed flow is as we have been teaching it.
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Seban-Shimazaki criterion: 1949 [10], 1951 [11]

For thermally developed flow: 𝜕
𝜕𝑥 (

𝑇𝑤 − 𝑇
𝑇𝑤 − 𝑇𝑏

) = 0

This criterion is a short-cut for analysis of thermally developed flow,
ensures ℎ independent of 𝑥.

One-term limit of Graetz loses 𝒙 dependence
(S-S crit. met automatically):

(
𝑇𝑤 − 𝑇pp
𝑇𝑤 − 𝑇𝑏

) = [
𝐵0 exp(−32𝜆20𝑥+/3)𝑌0( ̄𝑦) + ∑∞

𝑛=1 𝐵𝑛 exp(−32𝜆
2
𝑛𝑥+/3)𝑌𝑛( ̄𝑦)

3(𝐺0/𝜆20) exp(−32𝜆20𝑥+/3) + 3∑∞
𝑛=1(𝐺𝑛/𝜆

2
𝑛) exp(−32𝜆2𝑛𝑥+/3)

]

≃ (
𝜆20𝐵0𝑌0( ̄𝑦)

3𝐺0
) for 𝑥+ > 𝑥+𝑡𝑒

One-term limit with flow work & dissipation depends on 𝒙+ until transient
completely decays:

(
𝑇𝑤 − 𝑇
𝑇𝑤 − 𝑇𝑏

) ≃ (
𝐵0 exp (−

32
3
𝜆2𝑛𝑥+) 𝑌0( ̄𝑦) + Br fn( ̄𝑦)

3(𝐺0/𝜆20) exp (−
32
3
𝜆2𝑛𝑥+) + 𝑎Br

)

Ref. [1] used the criterion with an ℎ that included dissipation and flow
work: that led to a confused result.
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Summary

1 Dissipation in channels is an old problem (and sometimes a
homework problem…)

2 Dissipation + flow work in gases produce zero wall heat flux
3 Dissipation in liquids often produces very small temperature rise and
heat flux. Both scale with the Brinkman number.

4 If dissipation & flow work are not negligible, their effects can just be
added to Graetz solution, by superposition

5 Seban-Shimazaki criterion is misleading when dissipation is included
in the temperature profile

6 The textbook literature states the correct values of the thermally
developed Nusselt number

J. H. Lienhard, “On the Nusselt number for thermally developed flow between
isothermal parallel plates with dissipation,” ASME J. Heat Mass Transfer, June 2025,
https://doi.org/10.1115/1.4068967 (open access)
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Criterion to neglect dissipation effect on 𝑞𝑤 (liquids)

One-term Graetz solution including dissipation (thermally developed
region)

𝑞𝑤(𝑥+) ≃
(𝑇0 − 𝑇𝑤)𝑘

𝐷ℎ
[8𝐺0 exp (−32𝜆20𝑥+/3) + 12Br]

The one-term Graetz solution neglecting dissipation is within 5% of the
complete solution for

0.008117 ≤ 𝑥+ < −0.1178 − 0.03315 ln|Br| ≡ 𝐿+max
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Eigenvalues and coefficients for Graetz solution [9]

Table 1: Eigenvalues and coefficients for Graetz solution [9]. For higher 𝑛:
𝜆𝑛 ≐ 4𝑛 + 5/3 and 𝐺𝑛 ≐ 1.01278𝜆−1/3𝑛 [4].

𝑛 𝜆𝑛 𝐺𝑛
0 1.68159 0.858087
1 5.66985 0.569463
2 9.66842 0.476065
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Brinkman number at which liquid dissipation makes less
than a 5% or 1% contribution to 𝜃𝑏 or 𝑞𝑤

Table 2: Brinkman number at which liquid dissipation makes less than a 5% or 1%
contribution to 𝜃𝑏 or 𝑞𝑤 from the Graetz solution at the points where 𝜃𝑏 equals
0.05, 0.02, or 0.01.

|Br|

𝜃𝑏 𝑥+ 𝑞𝑤𝐷ℎ/𝑘Δ𝑇 5% of 𝜃𝑏 1% of 𝜃𝑏 5% of 𝑞𝑤 1% of 𝑞𝑤

0.05 0.09621 0.3770 3.646 × 10−3 7.292 × 10−4 1.571 × 10−3 3.142 × 10−4
0.02 0.1266 0.1508 1.458 × 10−3 2.917 × 10−4 6.824 × 10−4 1.257 × 10−4
0.01 0.1496 0.07541 7.292 × 10−4 1.458 × 10−4 3.142 × 10−4 6.284 × 10−5
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Why do flow work and dissipation cancel for ideal gases?

At the local level, they don’t: some dissipated mechanical energy is
conducted as heat from the high-shear region near the wall to the interior.

At the bulk level, the work dissipated to drive the gas against viscosity
balances the flow work released by the pressure gradient.

This can be shown by constructing the usual force balance (between wall
friction and pressure drop) for steady flow and multiplying by 𝑢𝑏 to get
power. The result simply shows that the rate of dissipating mechanical
energy by friction equals the flow work done.

For an incompressible liquid with 𝛽𝑇 = 0, the flow work does not appear in
the enthalpy equation, but dissipation still does.
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Are gas expansion effects larger than dissipation?

In gases, pressure drop cooling and dissipative heating combine to
produce zero wall heat flux: dissipated work exactly offsets expansion in
the bulk sense. The expansion is not adiabatic b/c volumetric heat source:
pressure drops isothermally.

The pressure gradient in the high Br airflow is about −3300 Pa/m. Bulk
density drops by 3.3% per meter. Kinetic energy will rise by 3.3% per meter
(but at 15 m/s, Ma <0.05).

Of course, heating and cooling may change the state of the gas by much
more!
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